Importance of mixed flux in dynamic rupture modeling

Wenqiang Zhang¹, Yajing Liu², Xiaofei Chen³ ¹Department of Geophysics, Stanford University ²Department of Earth and Planetary Sciences, McGill University ³Department of Earth and Space Sciences, Southern University of Science and Technology

2024 SCEC Dynamic Rupture Workshop, Nov 4

JGR Solid Earth

Research Article 🔂 Open Access 💿 🛈

A Mixed-Flux-Based Nodal Discontinuous Galerkin Method for 3D Dynamic Rupture Modeling

Wenqiang Zhang 🔀, Yajing Liu, Xiaofei Chen

https://doi.org/10.1029/2022JB025817

<u>https://github.com/wqseis/drdg3d</u> <u>https://github.com/wenqiang-geophys/drdg3dv2</u>

Challenges of earthquake modeling on complex faults

Longmenshan 3D fault model of the 2008 Wenchuan earthquake (Institute of Geology, China Earthquake Administration)

https://activefault-datacenter.cn/

Key point: dealing with fault intersections

But... Mesh dependency (2D Quadrilateral)

But... Mesh dependency (2D Triangular)

But... Mesh dependency (2D Triangular)

But... Mesh dependency (3D Tetrahedral)

But... Mesh dependency (3D Hexahedral)

For 3D cases, generating a high-quality mesh can be very challenging, depending on the complexity of the fault geometry.

Generating high-quality meshes can be very challenging!

Spatial spike oscillations (SSO) in time domain cause by **upwind flux**

Summary

- Upwind-flux method can be problematic, depending on the mesh quality, but regardless of the mesh type (Tri, Quad, Tet, Hexa)
- Generating high-quality mesh is sometimes impossible –> Improved methods are needed!
- Upwind flux is a "double-edged sword"

Introduce the "mixed flux"

Old scheme: **upwind** flux for all boundaries New scheme: Mixed **upwind/central** flux

(central flux is only used on continuous boundaries attached to faults)

Mixed flux reduces mesh dependency

Mixed flux reduces mesh dependency

The meshes on two sides of the fault do not need to be nearly symmetrical by using the mixed flux method

Mixed flux reduces mesh dependency

Benchmark TPV24: branch fault

Benchmark TPV29/30: rough fault

Benchmark TPV36/37: shallowly-dipping fault

Application: 2008 Mw 7.9 Wenchuan earthquake

Conclusion

- Upwind flux can be problematic when the mesh is highly asymmetric near the fault.
- Mixed-flux method solves the problem of spatial-spike oscillations when mesh is asymmetric, thus simplifies the modeling process especially for geometric-complex faults.
- Many benchmarks and applications to real-world earthquakes modeling demonstrate the flexibility of the method.
- > Open-source code *drdg3d*