

Overview of MOOSE-FARMS

Chunhui Zhao¹, Mohamed Abdelmeguid² and Ahmed Elbanna^{1,3}, PhD Department of Civil and Environmental Engineering, University of Illinois Urbana Champaign¹ Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA² Department of Physics[,] University of Illinois Urbana Champaign³

Mechanics of Complex Systems Group

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | What is MOOSE framework [1]?

MOOSE

Training ____ Getting Started ____ Documentation ____ Gallery News Citing GitHub 🗣

Multiphysics Object-Oriented Simulation Environment

An open-source, parallel finite element framework

Proven Capability

- Scalability to over 30,000 cores
- R&D 100 winner in 2014
- Wide variety of applications
- Built- in physics modules
 Natural multi-scale capability

Rapid Development

Simple installation

Extensive tutorials

Actional Laboratory

Active Community

Over 10 million tests run per week

Active discussion forum

Over 100 contributors

Over 500 publications

Los Alamos

Advantages:

- Parallelization and Scalability
- Multiphysics Coupling

MOOSE-FARMS: Fault And Rupture Mechanics Simulations is an App Based on MOOSE.

Github: https://github.com/chunhuizhao478/farms.git

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | Code Structure/Capability

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application

> TPV Benchmark Cases – TPV2052D & 3D, TPV142D, TPV1012D

- 2023 Turkey-Syria Earthquake
- Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS Verification: TPV205-2D Benchmark

Mesh Setup

Simulation Domain: 50km in both directions

Mesh Size: 100m

Element Type: QUAD4

NDOFs: 2,006,004

Numerical Simulation

Time Integration Scheme: Central Difference

Solve Type: Lumped Mass

Time Step: 0.005*s*. (Bounded by CFL condition)

Total Simulation Time: 12s

Figure: 2D Mesh Configuration

Variable	Value	Description
ρ	2670 kg/m^3	Density
$\lambda = \mu$	32.04 GPa	Lame Parameters
T_{2}^{0}	120 MPa	Background Normal Stress
<i>T</i> ⁰ ₁	$\begin{cases} 81.6 MPa, x < 1.5km \\ 78.0 MPa, -8km \le x \le -6km \\ 62.0 MPa, 6km \le x \le 8km \\ 70 MPa, else \end{cases}$	Background Shear Stress
D _c	0.4 m	Characteristic Length
μ_s	$\begin{cases} 0.677, & x < 15km \\ 10000, & x > 15km \end{cases}$	Static Friction Parameter
μ_d	0.525	Dynamic Friction Parameter
Δx	100 m	Mesh Size

Figure: Parameter Table

MOOSE-FARMS Verification: TPV205-2D Benchmark

Figure: Time History of Slip rate (FE - 50m, FE - 100m, Moose) at locations 0 km, 4.5 km, -4.5 km

MOOSE Implementation Verification: TPV205-3D Benchmark

nho National Laboratory

Mesh Setup

Simulation Domain: (30km \times 30km \times 30km)

Mesh Size: 200m

Element Type: HEX8

NDOFs: 10,397,256

Numerical Simulation

Time Integration Scheme: Central Difference

Solve Type: Lumped Mass

Time Step: 0.005*s*

Total Simulation Time: 12s

Figure: 3D Mesh Configuration

Variable	Value	Description
ρ	$2670 \ kg/m^3$	Density
$\lambda = \mu$	32.04 GPa	Lame Parameters
<i>T</i> ⁰ ₂	120 MPa	Background Normal Stress
T_1^0 $(6km \le z \le 9km)$	$\begin{cases} 81.6 MPa, x < 1.5 km \\ 78.0 MPa, -9 km \le x \le -6 km \\ 62.0 MPa, 6 km \le x \le 9 km \\ 70 MPa, else \end{cases}$	Background Shear Stress
D _c	0.4 m	Characteristic Length
μ _s	$\begin{cases} 0.677, & x < 15km \\ 10000, & x > 15km \end{cases}$	Static Friction Parameter
μ _d	0.525	Dynamic Friction Parameter
Δx	200 m	Mesh Size

Figure: Fault Surface Background Shear Stress Distribution

Figure: Parameter Table

MOOSE Implementation Verification: TPV205-3D Benchmark

Figure: Time History of Slip rate and Slip (FE - 100m, Moose-100m-HEX8)

MOOSE-FARMS | Verification Benchmark Case^[7]: TPV14-2D, TPV15-2D

Problem Setup

Variable		Description	TPV14-2D
			Right-Lateral
ρ	Density		$2670 kg/m^3$
$\lambda = \mu$	Lame Paramet	iers	32.04GPa
	Initial Shear Stress	Main Fault	70.0MPa
<i>T</i> ^{<i>o</i>} ₁		Branch Fault	70.0MPa
		Nucleation Zone	81.6MPa
T_2^o	Initial Normal Stress		120.0MPa
D _c	Characteristic	Length	0.4m
μ_s	Static Friction	Parameter	0.677
μ_d	Dynamic Fricti	on Parameter	0.525
Δx	Element Type	& Size	TRIA3, 100m
L	Domain Size		40km in x direction 38km in y direction
Δt	Time Step		0.0025s
t	Total Simulation	on Time	12s

MOOSE-FARMS | Verification Benchmark Case: TPV14-2D, TPV15-2D

TPV14 Slip/Slip Rate Plots

Slip Rate Time History At Main Fault Locations -2km, 2km, 5km, 9km

M Slip Rate Time History At Branch Locations 2km, 5km, 9km

Figure: Time History of Slip rate (FE - 100m, Moose-100m-TRIA3) at locations -2km, 2 km, 5.5 km, 9 km

MOOSE-FARMS | Verification Benchmark Case: TPV14-2D, TPV15-2D

TPV14 Slip/Slip Rate Plots

Slip Time History At Main Fault Locations -2km, 2km, 5km, 9km

Slip Time History At Branch Locations 2km, 5km, 9km

Figure: Time History of Slip (FE - 100m, Moose-100m-TRIA3) at locations -2km, 2 km, 5.5 km, 9 km

MOOSE-FARMS | Verification Benchmark Case: TPV101-2D

SCEC Benchmark TPV101

Idaho National Laboratory

MOOSE-FARMS | Verification Benchmark Case: TPV101-2D

Figure Selected slip rate and slip time history for location 0km, 2.5km, 7.5km along the fault for SCEC Benchmark TPV101(Red lines are solution from uguca-2d, blue lines are from MOOSE-FARMS, the mesh size is 50m for both cases).

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | Code Application: 2023 Turkey-Syria Earthquake

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | Code Application

Zhao et al (2024)[9], 2024 SCEC Annal Meeting Poster[10]

_____ 1 < S < 5 ______ 5 < S < 10

Activate

 $\sigma_{xy}^{o} +$ σ_{yy}^{o}

Time: 3.2 s

S value network distribution

$$F(\epsilon^{e}, \alpha, \nabla \alpha, B) = (1 - B)F_{s}(\epsilon^{e}, \alpha, \nabla \alpha) + BF_{b}(\epsilon^{e})$$
Where:

$$F_{s}(\epsilon, \alpha, \nabla \alpha) = \frac{1}{\rho} \left(\frac{\lambda}{2} I_{1}^{2} + \mu I_{2} - \gamma I_{1} \sqrt{I_{2}} + \frac{D}{2} \nabla \alpha \cdot \nabla \alpha \right)$$

$$F_{b}(\epsilon) = \frac{1}{\rho} \left(a_{0}I_{2} + a_{1}I_{1} \sqrt{I_{2}} + a_{2}I_{1}^{2} + a_{3} \frac{I_{1}^{3}}{\sqrt{I_{2}}} \right)$$

$$\frac{\partial \alpha}{\partial t} = \begin{cases} (1 - B)[C_{d}I_{2}(\xi - \xi_{o})] + D\nabla^{2}\alpha, \quad \xi \geq \xi_{o} \\ (1 - B)[C_{1}exp\left(\frac{\alpha}{C_{2}}\right)I_{2}(\xi - \xi_{o})], \quad \xi < \xi_{o} \end{cases}$$

$$\frac{\partial B}{\partial t} = \begin{cases} (1 - B)[C_{B}I_{2}(\xi - \xi_{o})], \quad \xi \geq \xi_{d} \\ C_{BH}I_{2}(\xi - \xi_{d}), \quad \xi \leq \xi_{d} \end{cases}$$

Figure: Interface friction couples with off-fault damage and breakage [9]

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | QUAKEWORX

The simulators developed in **MOOSE-FARMS** are available (to-be available) on the **QUAKEWORX** science gateway for democratizing access to earthquake simulations and data.

App r Sardi App r App r <th< th=""><th colspan="4">https://qwx1.onescienceway.com/apps/all</th><th>Hame / Node / Massa FADM</th></th<>	https://qwx1.onescienceway.com/apps/all				Hame / Node / Massa FADM
Image: Contract of the second of	App type	Search	Apply		
Image: Section	- 7019 -		Арру		Launch
Imput file* Imput file* <t< th=""><th>WEB APP / DOCKER Jupyter Notebook ver. 0.10 system. AWS System (EC2) Jupyter Notebook</th><th>BATCH APP / EXECUTABLE Moose-FARM Ver. 0.0.3 system. Expanse service Moose simulator</th><th>CuakeNN BATCH APP / EXECUTABLE OuakeNN ver. 0.01 system. Expanse service QuakeNN simulation</th><th>Seis Sol BATCH APP / EXECUTABLE SeisSol ver. 0.0.2 system. Expanse service 0.0.2</th><th>Application type Moose-Farm Dynamic CDBM Job name * Moose-FARM_4 Specify a name for this job</th></t<>	WEB APP / DOCKER Jupyter Notebook ver. 0.10 system. AWS System (EC2) Jupyter Notebook	BATCH APP / EXECUTABLE Moose-FARM Ver. 0.0.3 system. Expanse service Moose simulator	CuakeNN BATCH APP / EXECUTABLE OuakeNN ver. 0.01 system. Expanse service QuakeNN simulation	Seis Sol BATCH APP / EXECUTABLE SeisSol ver. 0.0.2 system. Expanse service 0.0.2	Application type Moose-Farm Dynamic CDBM Job name * Moose-FARM_4 Specify a name for this job
Image: With app / Executable Batch app / Executable Image: Choose File_no file selected Image: With app / Executable UCERF3-ETAS Ver. 02b30e5 Image: With app / Executable Ver. 02b30e5 system. Expanse service Image: With app / Executable VECRF3 ETAS Ver. 02b30e5 Ver. main_17c42cb30e6c5flb2e4054666ff ver. 02b30e5 Ver. 02b30e5 System. Expanse service Ver. 02b30e5 Ver. 02b30e5		_ <u>_</u>	i		Input file *
TandemUCERF3 ETASUCERT3 ETAS applicationver. main_T7c42dc9ae0ec519dver. 02b30e5cc1b5732681b2e40546661system. Expanse service	BATCH APP / EXECUTABLE	UCERF3-ETAS BATCH APP / EXECUTABLE	BATCH APP / EXECUTABLE UCERF3-ETAS ver. 02b30e5 system. Expanse service		Choose File no file selected One file only. 512 MB limit. Allowed types: i.
ver. main_17c42dc9ae0ec519dver. 02b30e5cc1b5732681b2e4054666f1system. Expanse servicesystem. Expanse service	Tandem	UCERF3 ETAS	UCERT3 ETAS application		
	ver. main_17c42dc9ae0ec519d cc1b5732681b2e4054666f1 system. Expanse service	ver. 02b30e5 system. Expanse service			
UCERF3 ETAS Application Tandem app	Tandem app	UCERF3 ETAS Application			

- What is MOOSE framework ?
- Code Structure/Capability
- Code Validation and Application
 - TPV Benchmark Cases
 - 2023 Turkey-Syria Earthquake
 - Coupling with Continuum Damage-Breakage Model
- QUAKEWORX Project
- Future Work and References

MOOSE-FARMS | References

Future Work

- Document the existing validation cases
- Validate code with TPV10/TPV11 with dip-slip fault, 60 degrees angle
- Contribute the results for TPV35 and TPV36

References

[1] Lindsay, A. D., Gaston, D. R., Permann, C. J., Miller, J. M., Andrš, D., Slaughter, A. E., Kong, F., Hansel, J., Carlsen, R. W., Icenhour, C., Harbour, L., Giudicelli, G. L., Stogner, R. H., German, P., Badger, J., Biswas, S., Chapuis, L., Green, C., Hales, J., Hu, T., Jiang, W., Jung, Y. S., Matthews, C., Miao, Y., Novak, A., Peterson, J. W., Prince, Z. M., Rovinelli, A., Schunert, S., Schwen, D., Spencer, B. W., Veeraraghavan, S., Recuero, A., Yushu, D., Wang, Y., Wilkins, A., & Wong, C. (2022). 2.0 - MOOSE: Enabling massively parallel multiphysics simulation. SoftwareX, 20(101202). https://doi.org/10.1016/j.softx.2022.101202

[2]Day, S. M., Dalguer, L. A., Lapusta, N., & Liu, Y. (2005). Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005JB003813

[3]Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. (n.d.). https://gmsh.info/.

[4]MASTODON. (n.d.). MASTODON: A seismic simulation tool for soil-structure interaction. https://mooseframework.inl.gov/mastodon/.

[5]ParaView. (n.d.). ParaView: Open-source scientific visualization. https://www.paraview.org/.

[6]netCDF4: A python interface to netCDF version 4. (n.d.). https://pypi.org/project/netCDF4/.

[7] Harris, R.A., M. Barall, R. Archuleta, B. Aagaard, J.-P. Ampuero, H. Bhat, V. Cruz-Atienza, L. Dalguer, P. Dawson, S. Day, B. Duan, E. Dunham, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton, <u>The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise</u>, Seismological Research Letters, vol. 80, no. 1, pages 119-126, doi:10.1785/gssrl.80.1.119, 2009.

[8] Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, A., & Rosakis, A. (2023). Dynamics of episodic supershear in the 2023 M7. 8 Kahramanmaraş/Pazarcik earthquake, revealed by near-field records and computational modeling. *Communications Earth & Environment*, 4(1), 456.

[9] Zhao, C., Mia, M. S., Elbanna, A., & Ben-Zion, Y. (2024). Dynamic rupture modeling in a complex fault zone with distributed and localized damage. *Mechanics of Materials*, 198, 105139.

[10] Zhao, C., Elbanna, A. E., & Ben-Zion, Y. (2024, 09). Multiscale Dvnamics of 3D Rupture Zones using a Continuum Damage Breakage Rheology. Poster Presentation at 2024 SCEC Annual Meeting.

Thanks for your listening! Any questions?

