

The CRESCENT Dynamic Rupture, Earthquake Cycle, and Tsunamis Working Group (DET)

DET Leadership Team: Eric Dunham, Alice Gabriel, Brittany Erickson, Benchuan **Duan, Ruth Harris, Ignacio Sepulveda,** Yihe Huang, Yajing Liu, James Biemiller

The 1700 Great

earthquake occurred on the Cascadia Subduction Zone. The earthquake generated a tsunami that coast of Japan approximately nine hours later.

Infographic from https://cascadiaquakes.org/

Motivating science questions

Shallow rupture behavior, splays and yielding and tsunami generation

- Basement
- Décollement
- Reversed-polarity
- reflections
- Major thrust faults
- Backthrusts
- Proto-thrusts
- Normal faults
- (Han et al, 2017)

Relation between megathrust ruptures, transition zone, slow slip & tremors

(Wang & Tréhu, 2016)

DET Community Products

Self-consistent earthquake dynamic rupture and tsunami models (it's the same source!)

3D dynamic rupture simulations (SeisSol)

- complex geometries (CFM, bathymetry)
- heterogeneous elastic properties (CVM)
- splay faults
- sediment yielding
- sources informed by coupling model
- validation with paleoseismology lacksquare

Tsunami generation as part of simulation (minutes), tsunami propagation (hours) with different codes

DET Community Products

Self-consistent earthquake dynamic rupture and tsunami models (it's the same source!)

3D dynamic rupture simulations (SeisSol)

- complex geometries (CFM, bathymetry)
- heterogeneous elastic properties (CVM)
- splay faults
- sediment yielding
- sources informed by coupling model
- validation with paleoseismology

Partial ruptures governed by the complex interplay between geodetic slip deficit, rigidity, and pore fluid pressure in 3D Cascadia dynamic rupture simulations

(Glehman, Gabriel, Ulrich, Ramos, Huang and Lindsey, **preprint**)

DET Community Products

2D and 3D earthquake cycle models with fluid transport and viscoelasticity

- initially 2D, then moving to 3D
- test hypotheses for slow slip events and their relation to megathrust ruptures
- self-consistency with fluid production and transport (Fluids SIG)

(Ozawa, Yang, & Dunham, 2023, in progress)

3D Cascadia earthquake cycle modeling with viscous flow

Accumulated slip for 5000 years

Zhang, Ozawa, Dunham (in progress)

Code verification through community benchmark problems and cross-comparison

- Our current TPV36/37 benchmark is jointly organized and includes the calculation of seafloor uplift
- Upcoming in Spring 2025: added water layer (and off-fault plasticity?)

(Lotto & Dunham, 2015; now in 3D, Krenz et al., 2021)

Upcoming earthquake cycle benchmarks for megathrusts

- YR 2. Elastic solid, general solution
- YR 3. Elastic solid, focus on slow slip events
- YR 4&5. Viscoelasticity and fault-zone fluid transport

Horizontal distance (km)

Timeline and upcoming topical and training workshops

Wokshops:

- fluids and faulting (YR2)
- shallow rupture (YR3)
- slow slip (YR4)
- model validation with paleoseismic data (YR5)
- training for DET modeling software (YR5)

YEAR 1

- Dynamic rupture simulations of megathrust earthquakes with tsunami generation
 Earthquake cycle simulations accounting for fluid production and transport, slow slip events, and megathrust earthquakes
- Website for community code verification activties
 - Dynamic rupture benchmark problems
 (2D and 3D megathrust earthquakes)

YEAR 2

 Extension of dynamic rupture simulations to account for splay faults and off-fault yielding, using preliminary CFM and CVM
 Continued development of earthquake cycle simulations, focusing on slow slip events (fast boundary element code for elastic half-space)
 Earthquake cycle

benchmark problems (2D and 3D, elastic)

YEAR 3

- Development of 3D earthquake cycle code using finite elements to handle heterogeneous elastic properties and material nonlinearity
- Tsunami modeling from dynamic rupture simulations and validation against paleoseismic data
 - Earthquake cycle benchmark problems
 (2D and 3D, focusing on slow slip events)

YEAR 4

- Extension of 3D
 earthquake cycle code to account for viscoelasticity,
 integrating CFM and CVM
 Framework for
- self-consistent earthquake and tsunami hazard modeling
- Earthquake cycle benchmark problems (2D and 3D, adding viscoelasticity and/or fluid transport)

YEAR 5

- Extension of 3D earthquake cycle code to account for fluid transport, fully integrating CFM and CVM
- Hazard assessment using self-consistent earthquake and tsunami models
- Earthquake cycle benchmark problems (2D and 3D, adding viscoelasticity and/or fluid transport)

